AI/ディープラーニング事例
COGNEX「In-Sight Vision Suite」のディープラーニング
ディープラーニングの運用により、パソコンが人間のように学習し、従来では難しかった不規則なワークの検出が可能になりました。
また、従来は数百枚~数千枚の画像が必要でしたが、In-Sight Vision Suite は数十枚の画像で短時間の学習が可能です。
金属業界へのご提案
既定の金属パーツが全て組付けられているか、の検査を実施。
組付け順番が替わったOK品はOK・パーツ不足等のNG品はNGと、きちんとOK・NG分類で外観検査することが可能です。
課題
ボルトとワッシャー 計5パーツが全てきちんと組み付けられているかのOK・NG 分類をしたい。「どんな並び方であっても、5パーツ全てが組み付けられていればOK」という条件があり、撮像画像にバラつきが出てしまうため、通常の画像処理で分類することが困難である。
ディープラーニング搭載画像センサ「In-Sight 2800」で
撮像も分類検査も実施
とにかくカンタン!「In-Sight 2800」
簡単に撮像
ハイスピードリキッドレンズ・内部照明搭載!
それぞれの自動調整機能を使えば、
最適な画像がたった2ステップで取得可能!
簡単にAI
ディープラーニングの分類機能とOCR機能付き!
GPU搭載PC・ライセンス不要!
さらに最低5枚の画像で学習完了!

を使うと…


「In-Sight Vision Suite」のAI/ディープラーニングなら!
◎ディープラーニングだからこそ、撮像画像にバラつきがあってもOK・NG分類が可能に!
参考トレーニング状況(ラベル有無検査)
画素数:720 x 540 Pix / モノクロ
教示枚数:良品6枚のみ
教示時間:5~10秒
処理速度:155~170msec(ViDi EL Classifyツール内)
PC スペック
CPU:Intel(R) Core(TM) i5-8265U CPU @ 1.60GHz 1.80 GHz
実装メモリ:8.0GB
GPUボード:なし